

CSIDH: An Efficient Post-Quantum Commutative Group Action

<https://csidh.isogeny.org>

Wouter Castryck¹ Tanja Lange² Chloe Martindale²

Lorenz Panny² Joost Renes³

¹KU Leuven ²TU Eindhoven ³RU Nijmegen

ECC, Osaka, Japan, 21st November 2018

A photograph of a sunset over a calm ocean. In the foreground, the silhouettes of several palm trees are visible against the bright sky. The sun is low on the horizon, casting a warm, golden glow. The sky is a mix of orange, yellow, and blue, with some wispy clouds. The ocean is a dark blue-grey.

['sɪ,saɪd]

History

- 1976 Diffie-Hellman: Key exchange using exponentiation in groups (DH)
- 1985 Koblitz-Miller: Diffie-Hellman style key exchange using multiplication in elliptic curve groups (ECDH)
- 1990 Brassard-Yung: Generalizes 'group exponentiation' to 'groups acting on sets' in a crypto context
- 1994 Shor: Polynomial-time quantum algorithm to break the discrete logarithm problem in any group, quantumly breaking DH and ECDH
- 1997 Couveignes: Post-quantum isogeny-based Diffie-Hellman-style key exchange using commutative group actions (not published at the time)
- 2003 Kuperberg: Subexponential-time quantum algorithm to attack cryptosystems based on a hidden shift

History

- 2004 Stolbunov-Rostovtsev independently rediscover Couveignes' scheme (CRS)
- 2006 Charles-Goren-Lauter: Build hash function from supersingular isogeny graph
- 2010 Childs-Jao-Soukharev: Apply Kuperberg's (and Regev's) hidden shift subexponential quantum algorithm to CRS
- 2011 Jao-De Feo: Build Diffie-Hellman style key exchange from supersingular isogeny graph (SIDH)
- 2018 De Feo-Kieffer-Smith: Apply new ideas to speed up CRS
- 2018 Castryck-Lange-Martindale-Panny-Renes: Apply ideas of De Feo, Kieffer, Smith to supersingular curves over \mathbb{F}_p (CSIDH)

(History slides mostly stolen from Wouter Castryck)

Why CSIDH?

- ▶ Drop-in post-quantum replacement for (EC)DH

Why CSIDH?

- ▶ Drop-in post-quantum replacement for (EC)DH
- ▶ Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly

Why CSIDH?

- ▶ Drop-in post-quantum replacement for (EC)DH
- ▶ Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- ▶ Small keys: 64 bytes at conjectured AES-128 security level

Why CSIDH?

- ▶ Drop-in post-quantum replacement for (EC)DH
- ▶ Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- ▶ Small keys: 64 bytes at conjectured AES-128 security level
- ▶ Competitive speed: ~ 85 ms for a full key exchange

Why CSIDH?

- ▶ Drop-in post-quantum replacement for (EC)DH
- ▶ Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- ▶ Small keys: 64 bytes at conjectured AES-128 security level
- ▶ Competitive speed: ~ 85 ms for a full key exchange
- ▶ Flexible:
 - ▶ Compatible with 0-RTT protocols such as QUIC
 - ▶ [DG] uses CSIDH for 'SeaSign' signatures
 - ▶ [DGOPS] uses CSIDH for oblivious transfer
 - ▶ [FTY] uses CSIDH for authenticated group key exchange

CSIDH vs SIDH?

Apart from mathematical background, SIDH and CSIDH actually have very little in common, and are likely to be useful for different applications.

Here is a comparison (mostly stolen from Luca de Feo):

	CSIDH	SIDH
Speed (NIST 1)	85ms	$\approx 10\text{ms}^1$
Public key size (NIST 1)	64B	378B
Key compression (speed)		$\approx 15\text{ms}$
Key compression (size)		222B
Constant time implementation	yes (quick and dirty)	yes
Submitted to NIST	no	yes
Maturity	7 months	7 years
Best classical attack	$p^{1/4}$	$p^{1/4}$
Best quantum attack	subexponential	$p^{1/6}$
Key size scales	quadratically	linearly
Security assumption	isogeny walk problem	ad hoc
CPA security	yes	yes
CCA security	yes	Fujisaki-Okamoto
Non-interactive key exchange	yes	unbearably slow
Signatures (classical)	unbearably slow	seconds
Signatures (quantum)	seconds	still seconds?

¹This is a very conservative estimate!

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a **group** G via the map

$$\begin{array}{ccc} \mathbb{Z} \times G & \rightarrow & G \\ (x, g) & \mapsto & g^x. \end{array}$$

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a **group** G via the map

$$\begin{array}{ccc} \mathbb{Z} \times G & \rightarrow & G \\ (x, g) & \mapsto & g^x. \end{array}$$

Shor's algorithm quantumly computes x from g^x in any group in polynomial time.

Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a **group** G via the map

$$\begin{array}{ccc} \mathbb{Z} \times G & \rightarrow & G \\ (x, g) & \mapsto & g^x. \end{array}$$

Shor's algorithm quantumly computes x from g^x in any group in polynomial time.

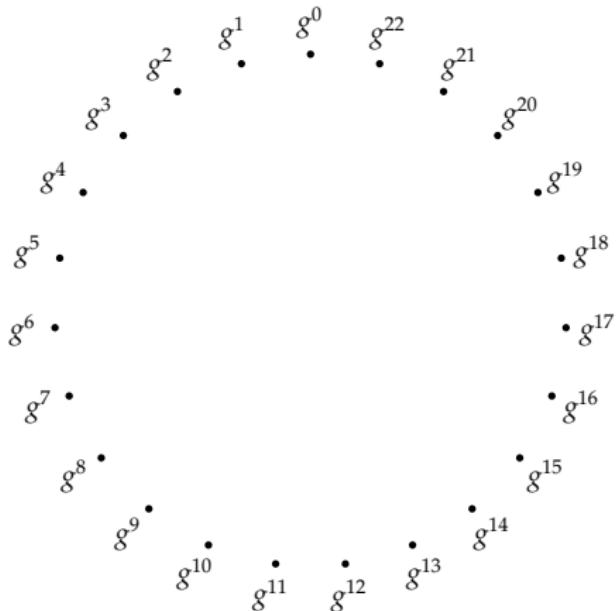
~~> Idea:

Replace exponentiation on the group G by a **group action** of a group H on a **set** S :

$$H \times S \rightarrow S.$$

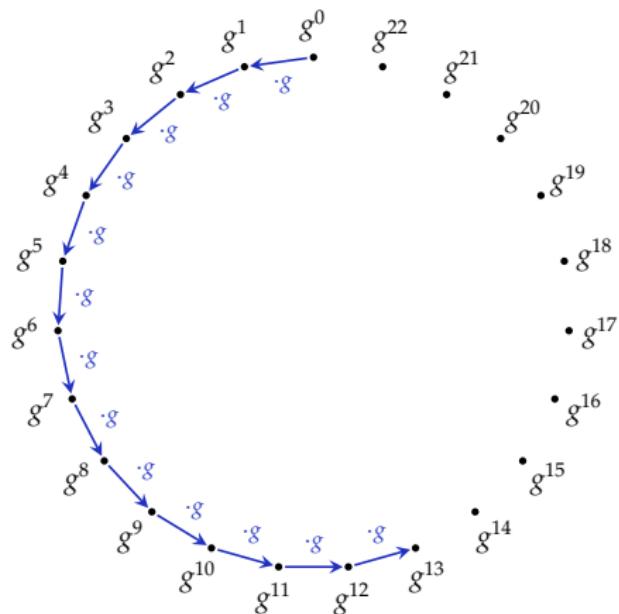
Square-and-multiply

Suppose $G \cong \mathbb{Z}/23$ and that Alice computes g^{13} .



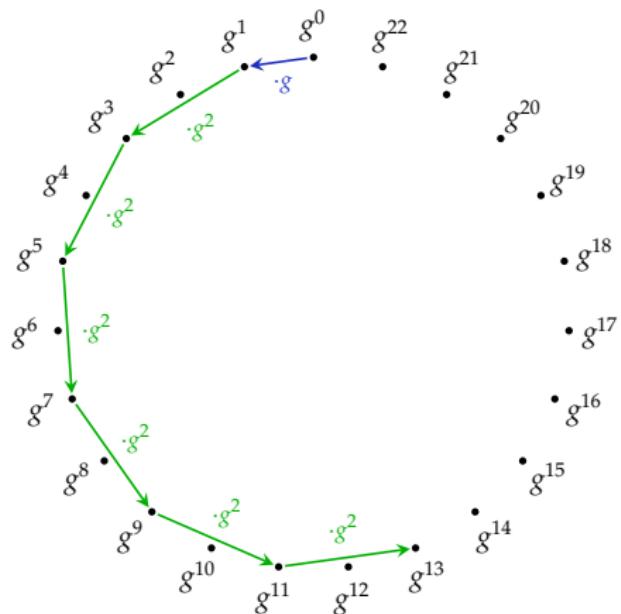
Square-and-multiply

Suppose $G \cong \mathbb{Z}/23$ and that Alice computes g^{13} .



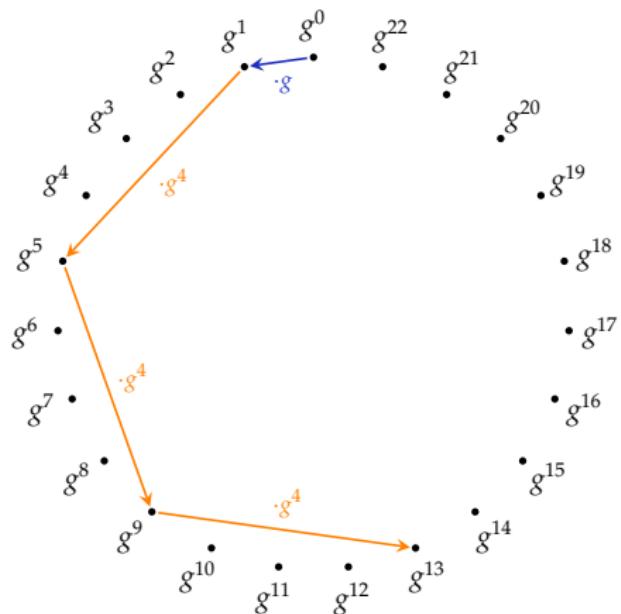
Square-and-multiply

Suppose $G \cong \mathbb{Z}/23$ and that Alice computes g^{13} .



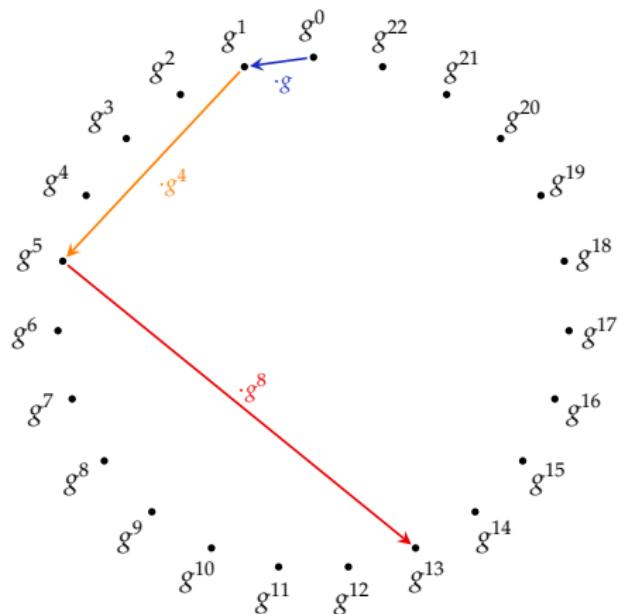
Square-and-multiply

Suppose $G \cong \mathbb{Z}/23$ and that Alice computes g^{13} .

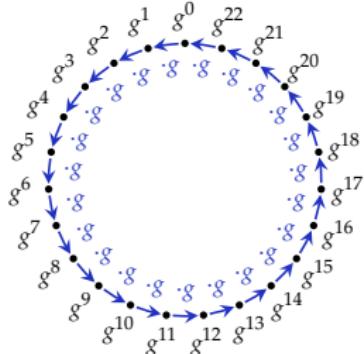
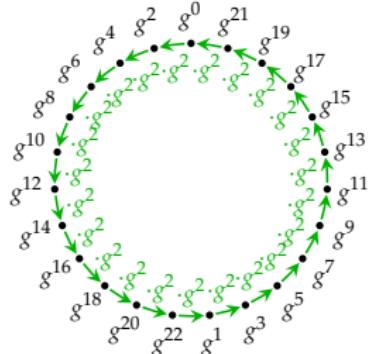
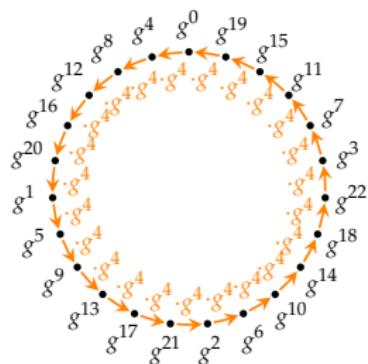
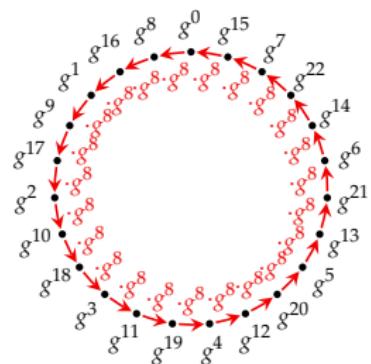


Square-and-multiply

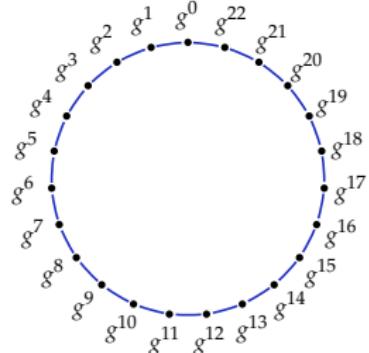
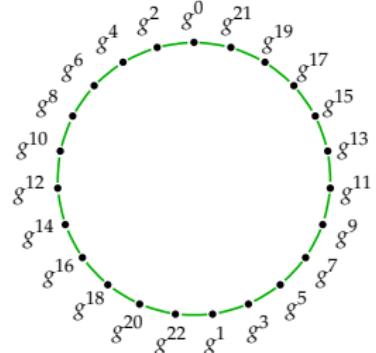
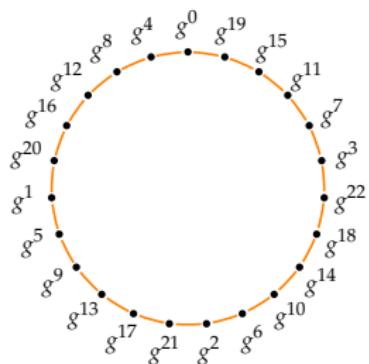
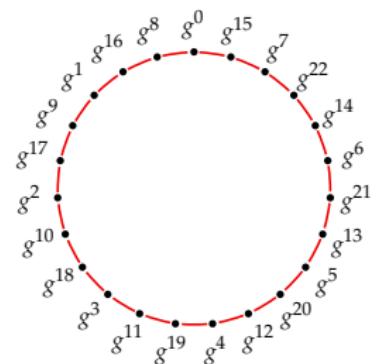
Suppose $G \cong \mathbb{Z}/23$ and that Alice computes g^{13} .



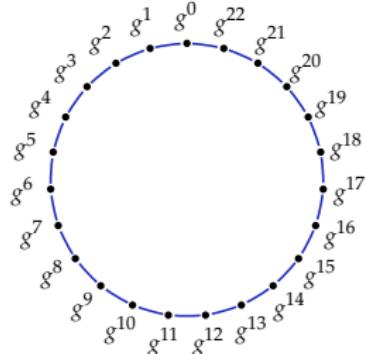
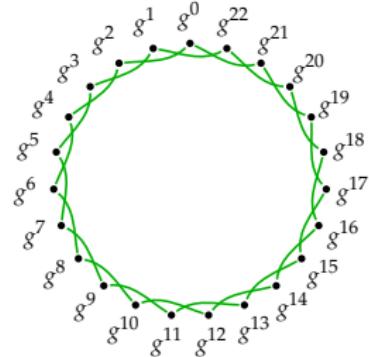
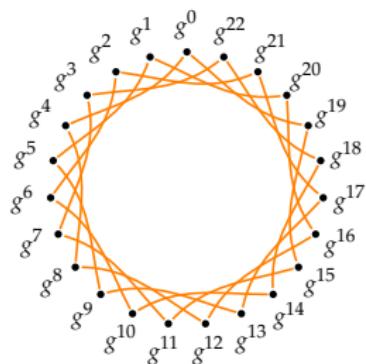
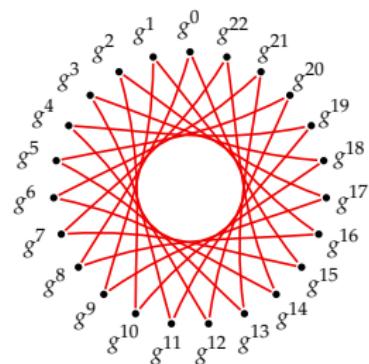
Square-and-multiply



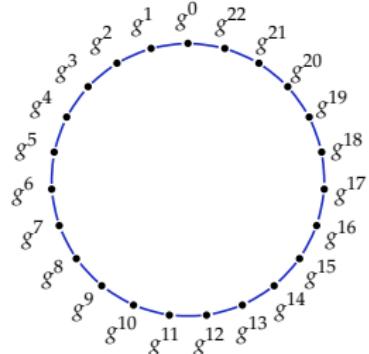
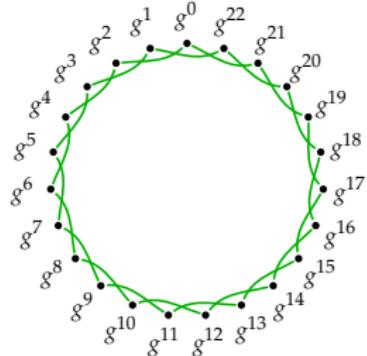
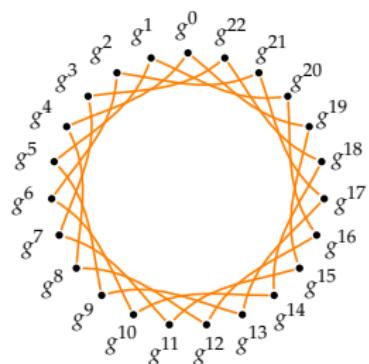
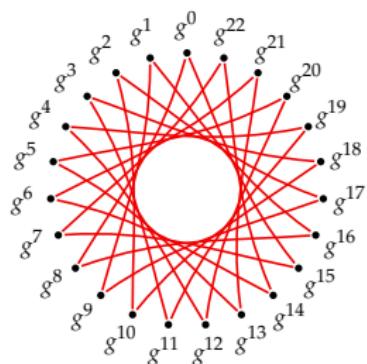
Square-and-multiply



Square-and-multiply

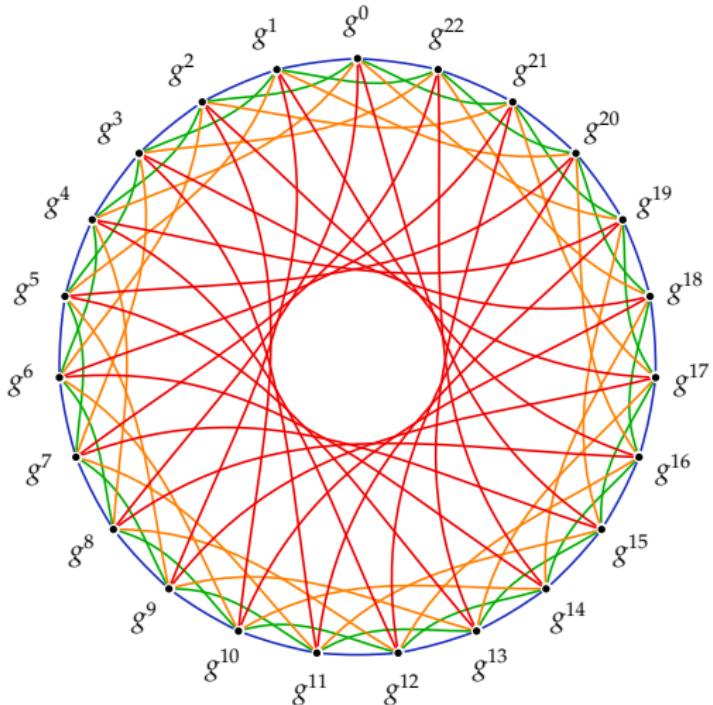


Square-and-multiply

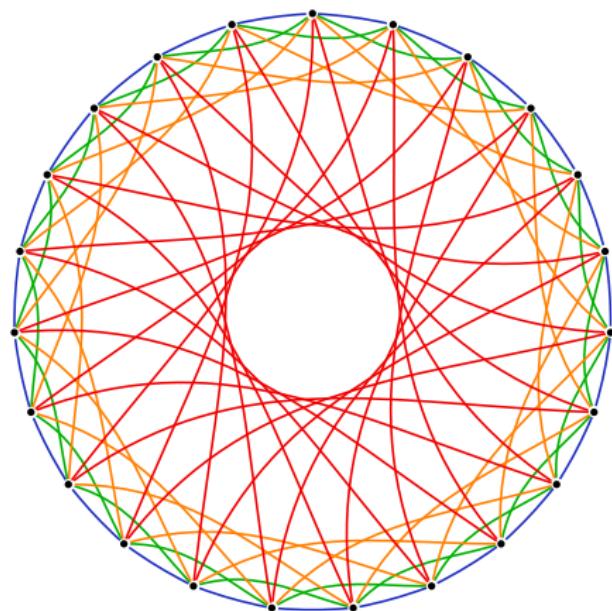


Cycles are **compatible**: [right, then left] = [left, then right], etc.

Union of cycles: rapid mixing

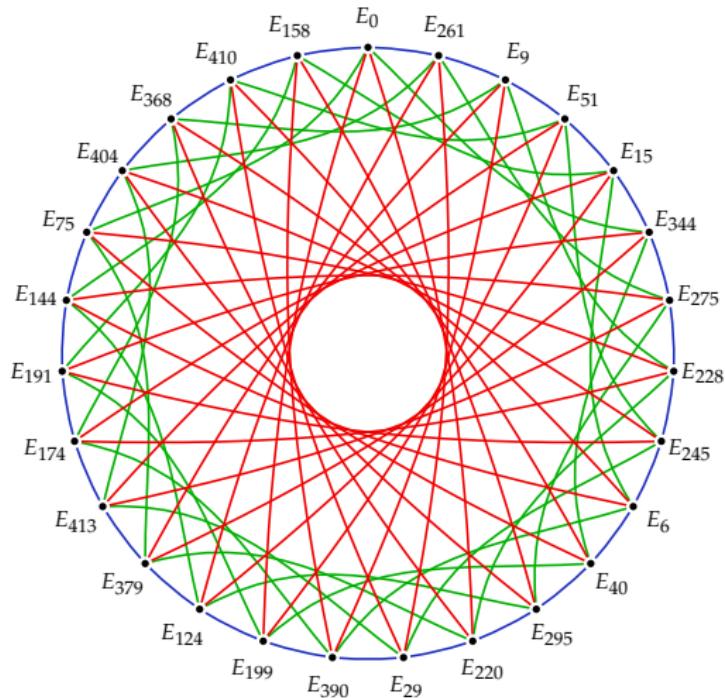


Union of cycles: rapid mixing

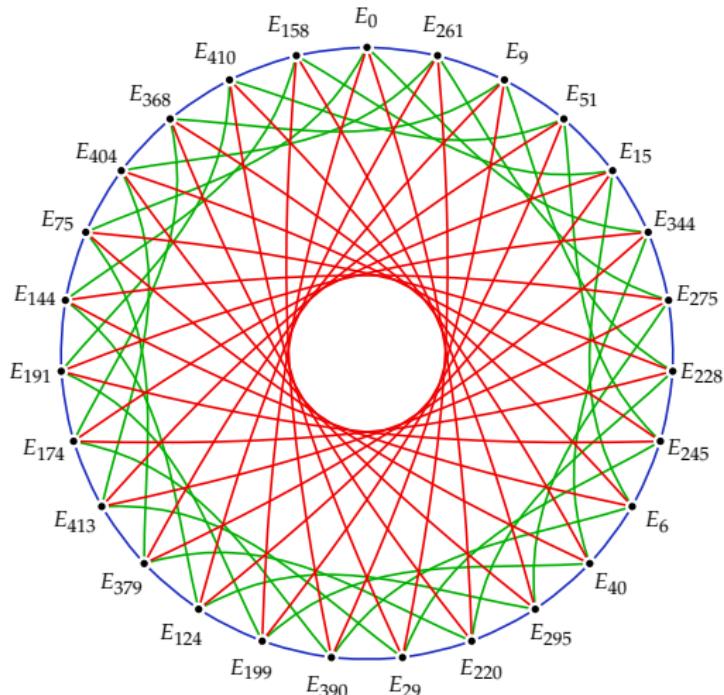


CSIDH: Nodes are now **elliptic curves** and edges are **isogenies**.

Graphs of elliptic curves

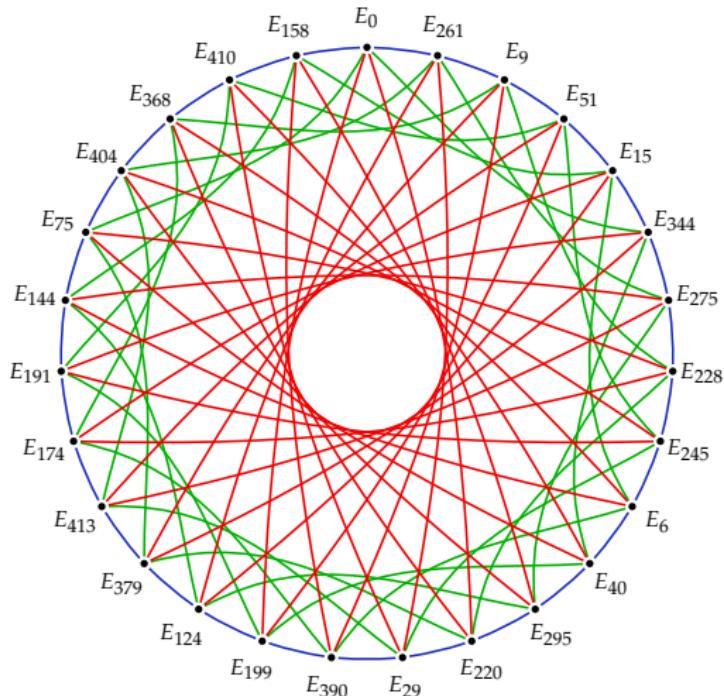


Graphs of elliptic curves



Nodes: Supersingular curves $E_A : y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Graphs of elliptic curves



Nodes: Supersingular curves $E_A: y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .
 Edges: 3-, 5-, and 7-isogenies.

Quantumifying Exponentiation

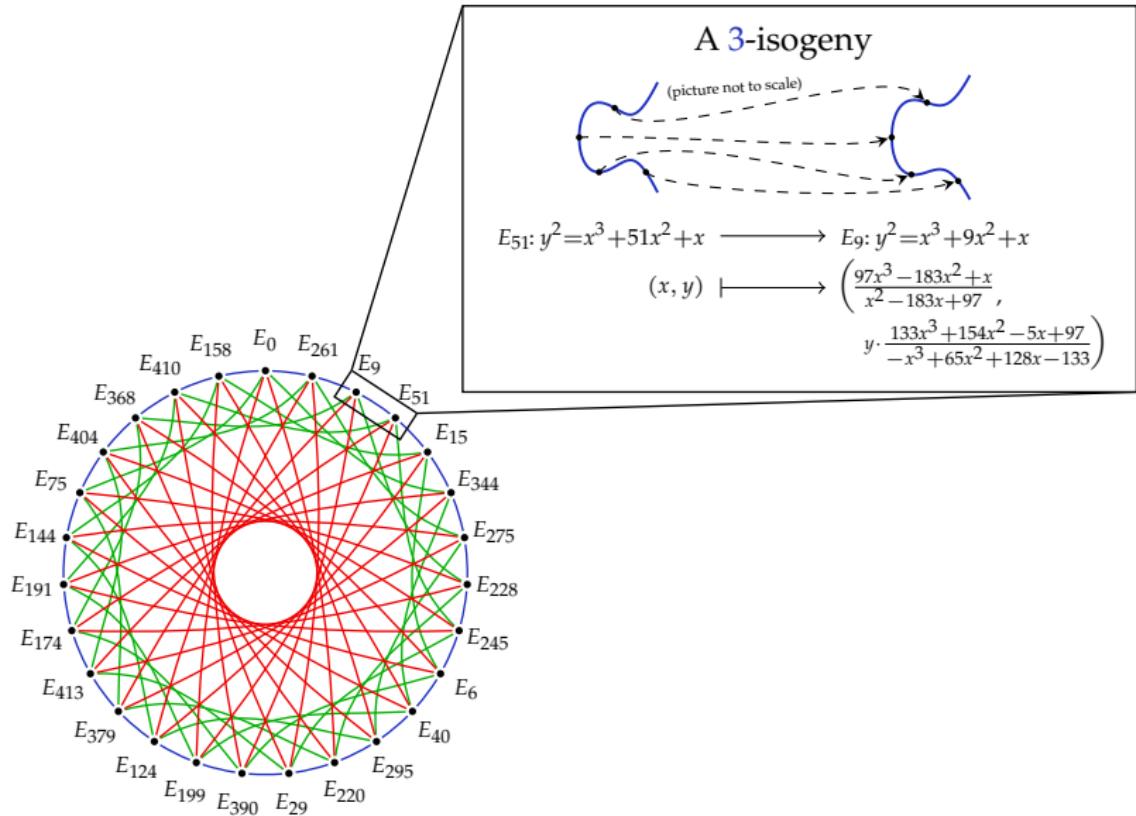
- We want to replace the exponentiation map

$$\begin{array}{ccc} \mathbb{Z} \times G & \rightarrow & G \\ (x, g) & \mapsto & g^x \end{array}$$

by a group action on a **set**.

- Replace G by the set S of supersingular elliptic curves $E_A : y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .
- Replace \mathbb{Z} by a commutative group H ... more details to come!
- The **action** of a well-chosen $h \in H$ on S moves the elliptic curves one step around one of the cycles.

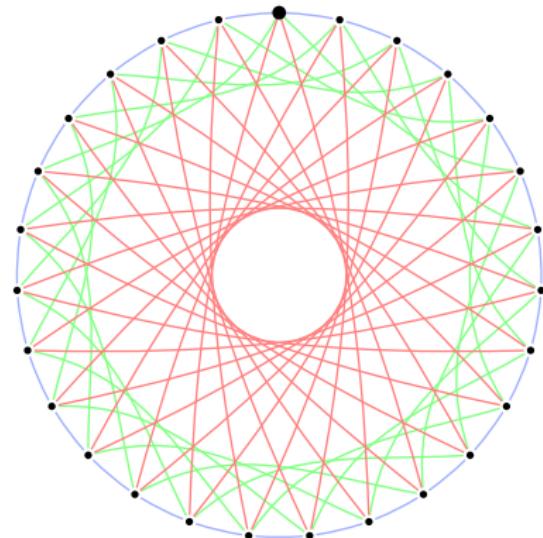
Graphs of elliptic curves



Diffie-Hellman on 'nice' graphs

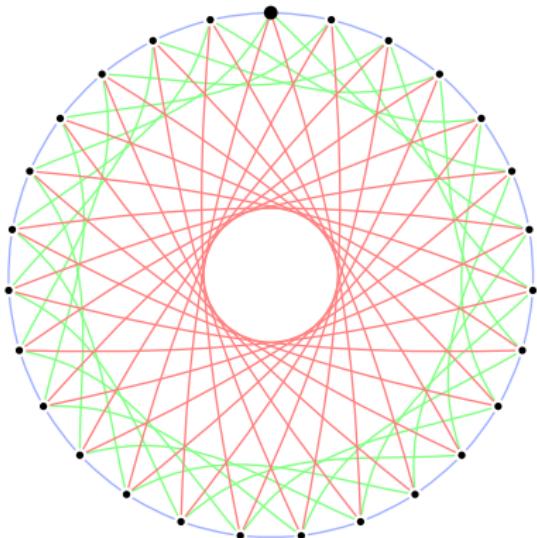
Alice

[+, -, +, -]



Bob

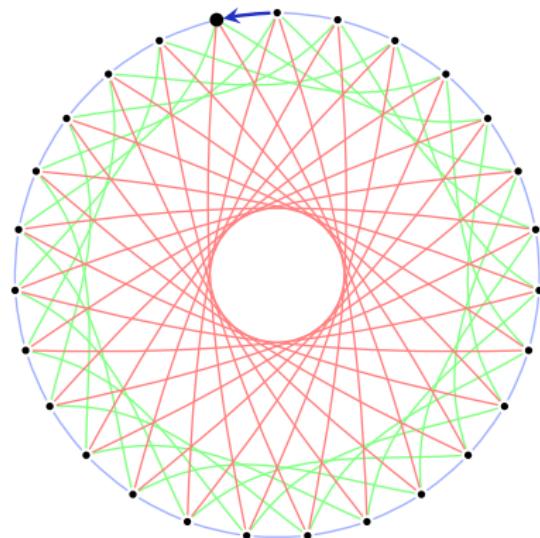
[+, +, -, +]



Diffie-Hellman on 'nice' graphs

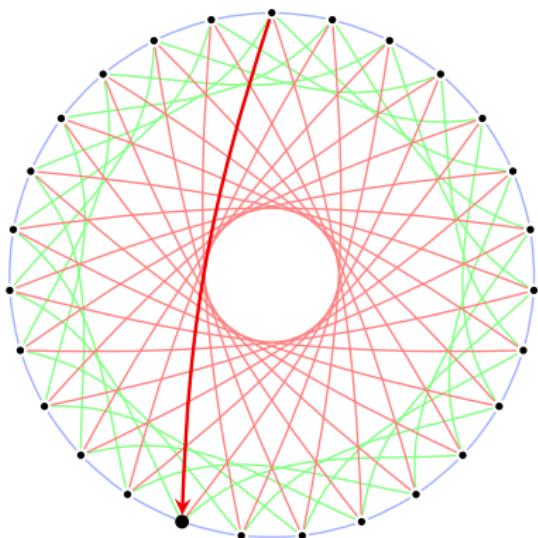
Alice

[$+$, $-$, $+$, $-$]
↑



Bob

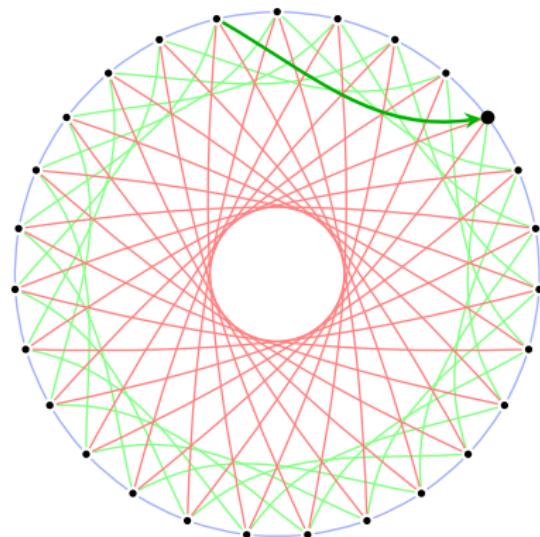
[$+$, $+$, $-$, $+$]
↑



Diffie-Hellman on 'nice' graphs

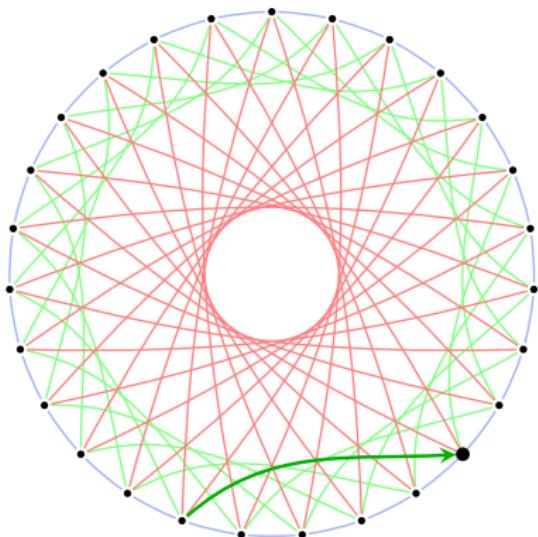
Alice

$[+,-,+,-]$
↑



Bob

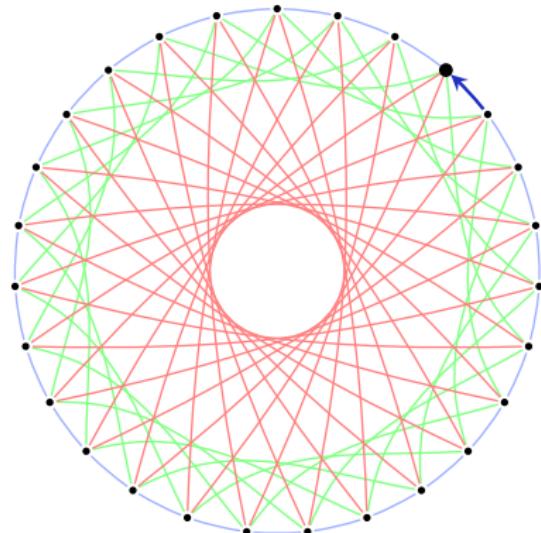
$[+,-,+,-]$
↑



Diffie-Hellman on 'nice' graphs

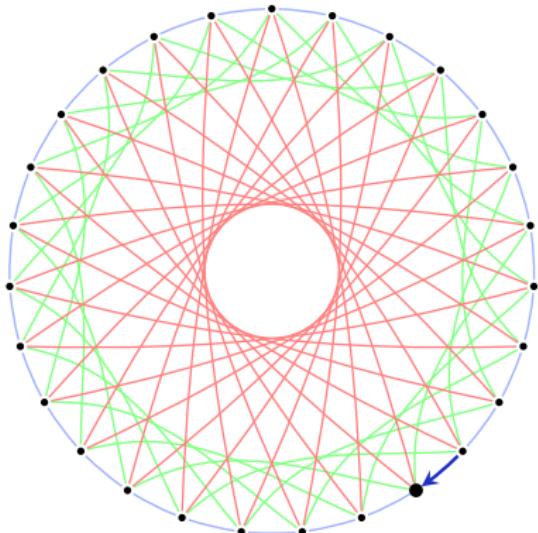
Alice

$[+, -, +, -]$
↑



Bob

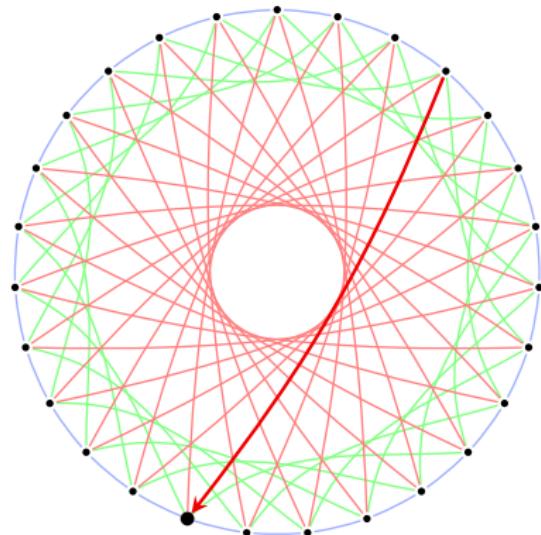
$[+, +, -, +]$
↑



Diffie-Hellman on 'nice' graphs

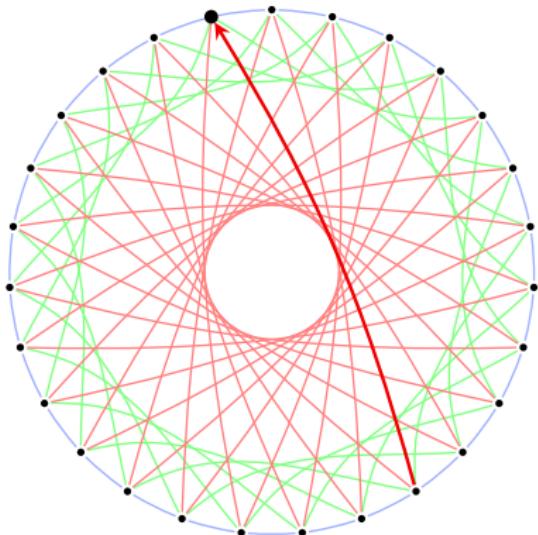
Alice

$[+, -, +, -]$
↑



Bob

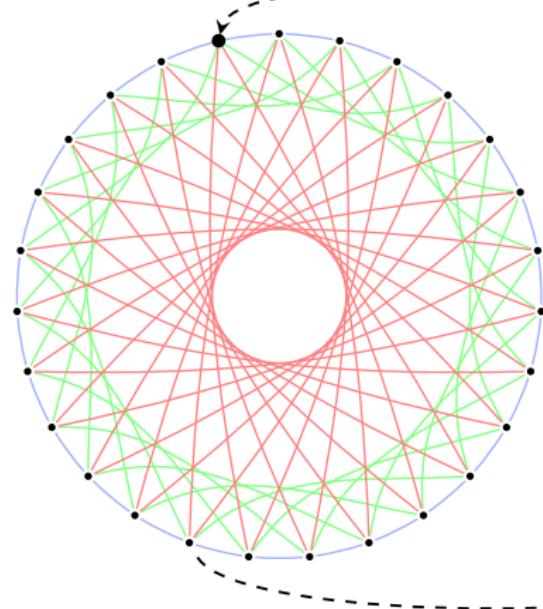
$[+, +, -, +]$
↑



Diffie-Hellman on 'nice' graphs

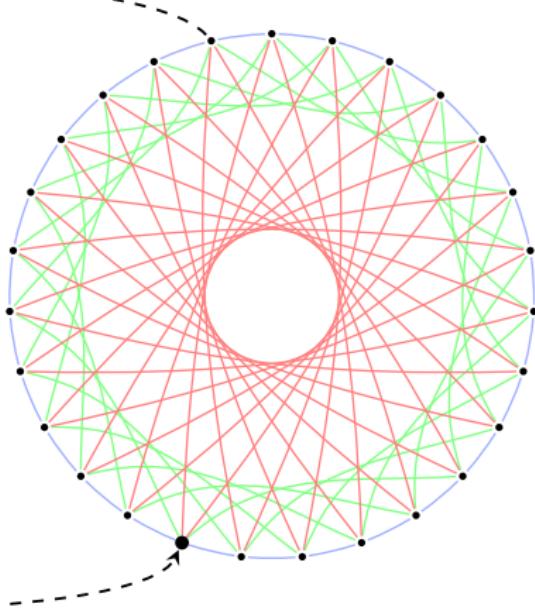
Alice

[+, -, +, -]



Bob

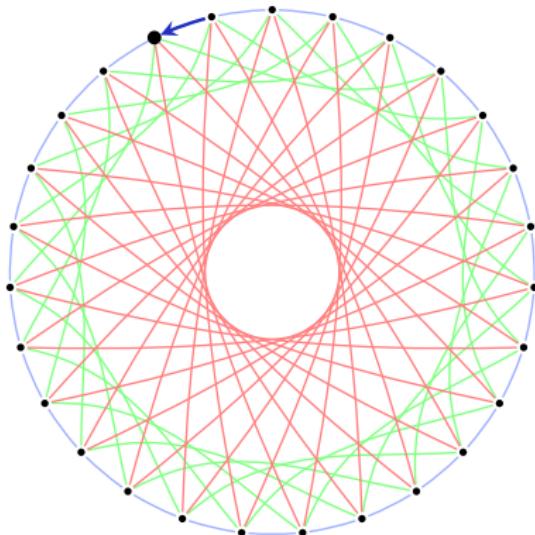
[+, +, -, +]



Diffie-Hellman on 'nice' graphs

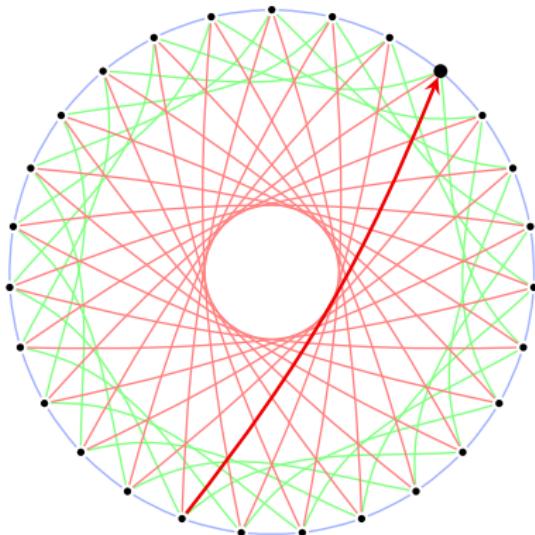
Alice

[$+$, $-$, $+$, $-$]
↑



Bob

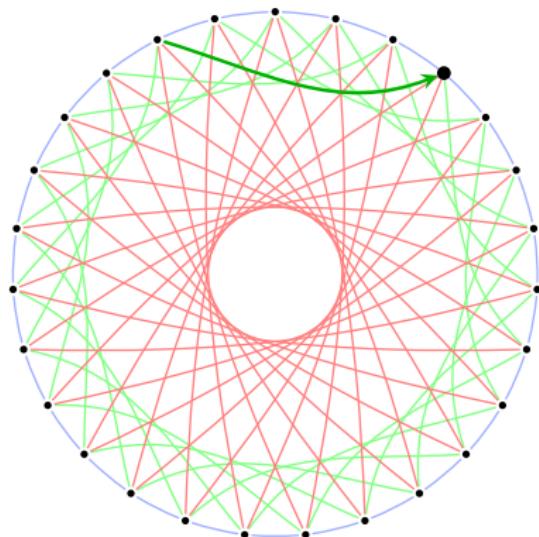
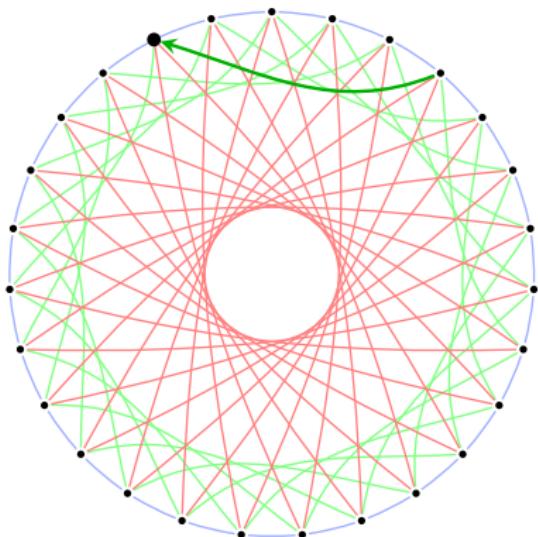
[$+$, $+$, $-$, $+$]
↑



Diffie-Hellman on 'nice' graphs

Alice
[$+$, $-$, $+$, $-$]
↑

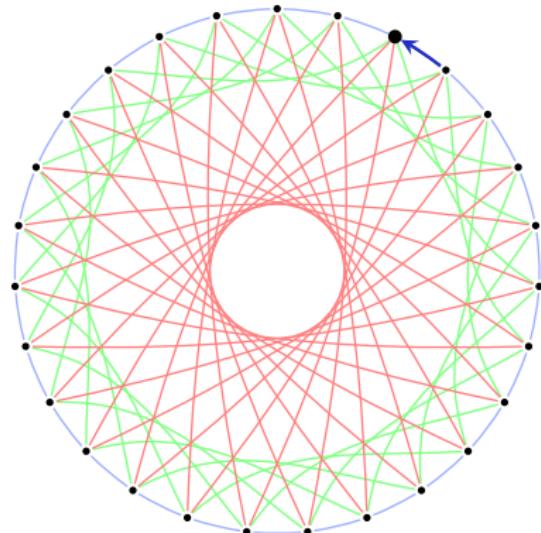
Bob
[$+$, $+$, $-$, $+$]
↑



Diffie-Hellman on 'nice' graphs

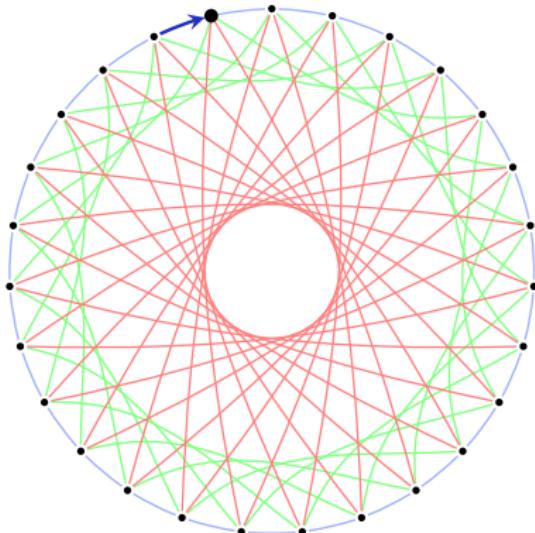
Alice

$[+, -, +, -]$
↑



Bob

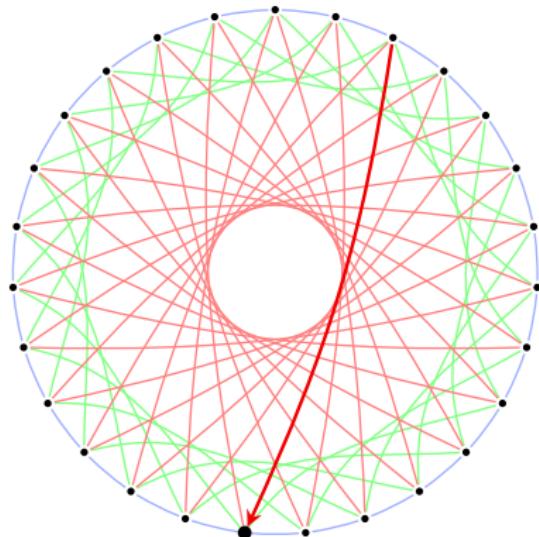
$[+, +, -, +]$
↑



Diffie-Hellman on 'nice' graphs

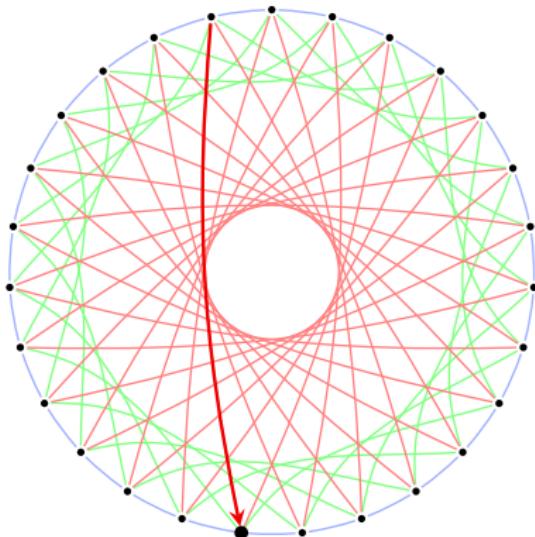
Alice

$[+, -, +, -]$
↑



Bob

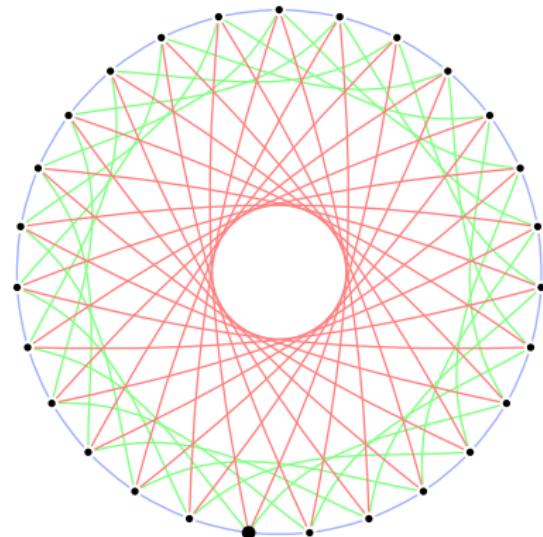
$[+, +, -, +]$
↑



Diffie-Hellman on 'nice' graphs

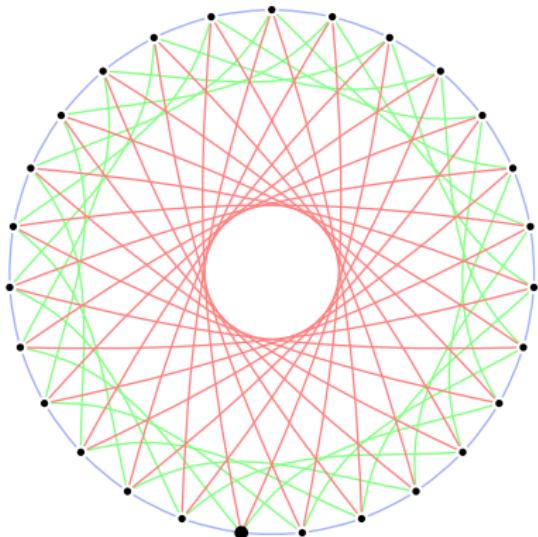
Alice

[+, -, +, -]



Bob

[+, +, -, +]



A walkable graph

- Nodes: Supersingular elliptic curves $E_A: y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

A walkable graph

- ▶ Nodes: **Supersingular elliptic curves** $E_A: y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .
- ▶ Edges: **3-, 5-, and 7-isogenies** (more details to come).

A walkable graph

- ▶ Nodes: Supersingular elliptic curves $E_A: y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .
- ▶ Edges: 3-, 5-, and 7-isogenies (more details to come).

Important properties for such a walk:

- IP1 ▶ The graph is a composition of compatible cycles.
- IP2 ▶ We can compute neighbours in given directions.

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

- ▶ An elliptic curve E/\mathbb{F}_p (for $p \geq 5$) is **supersingular** if $\#E(\mathbb{F}_p) = p + 1$.

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

- ▶ An elliptic curve E/\mathbb{F}_p (for $p \geq 5$) is **supersingular** if $\#E(\mathbb{F}_p) = p + 1$.
- ▶ An **isogeny** between two elliptic curves $E \rightarrow E'$ is a surjective morphism (of abelian varieties) that preserves the identity.

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

- ▶ An elliptic curve E/\mathbb{F}_p (for $p \geq 5$) is **supersingular** if $\#E(\mathbb{F}_p) = p + 1$.
- ▶ An **isogeny** between two elliptic curves $E \rightarrow E'$ is a surjective morphism (of abelian varieties) that preserves the identity.
- ▶ For elliptic curves $E, E'/\mathbb{F}_p$ and a prime $\ell \neq p$, an **ℓ -isogeny** $f : E \rightarrow E'$ is an isogeny with $\# \ker(f) = \ell$.

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

- ▶ An elliptic curve E/\mathbb{F}_p (for $p \geq 5$) is **supersingular** if $\#E(\mathbb{F}_p) = p + 1$.
- ▶ An **isogeny** between two elliptic curves $E \rightarrow E'$ is a surjective morphism (of abelian varieties) that preserves the identity.
- ▶ For elliptic curves $E, E'/\mathbb{F}_p$ and a prime $\ell \neq p$, an **ℓ -isogeny** $f : E \rightarrow E'$ is an isogeny with $\# \ker(f) = \ell$.
- ▶ If $f : E \rightarrow E'$ is an ℓ -isogeny, there is a unique **dual isogeny** $f^\vee : E' \rightarrow E$ such that $f^\vee \circ f = [\ell]$ is the multiplication-by- ℓ map on E .

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

- ▶ An elliptic curve E/\mathbb{F}_p (for $p \geq 5$) is **supersingular** if $\#E(\mathbb{F}_p) = p + 1$.
- ▶ An **isogeny** between two elliptic curves $E \rightarrow E'$ is a surjective morphism (of abelian varieties) that preserves the identity.
- ▶ For elliptic curves $E, E'/\mathbb{F}_p$ and a prime $\ell \neq p$, an **ℓ -isogeny** $f : E \rightarrow E'$ is an isogeny with $\# \ker(f) = \ell$.
- ▶ If $f : E \rightarrow E'$ is an ℓ -isogeny, there is a unique **dual isogeny** $f^\vee : E' \rightarrow E$ such that $f^\vee \circ f = [\ell]$ is the multiplication-by- ℓ map on E .
- ▶ The dual isogeny is also an ℓ -isogeny.

Towards IP1: Isogeny graphs

Definition

Let p and ℓ be distinct primes. The **isogeny graph** G_ℓ containing E/\mathbb{F}_p is the graph with:

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$ (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: we draw an edge $E - E'$ to represent an ℓ -isogeny $f : E \rightarrow E'$ together with its dual ℓ -isogeny.

Towards IP1: Isogeny graphs

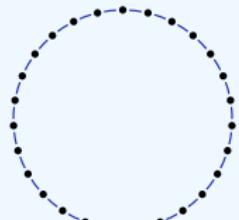
Definition

Let p and ℓ be distinct primes. The **isogeny graph** G_ℓ containing E/\mathbb{F}_p is the graph with:

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$ (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: we draw an edge $E - E'$ to represent an ℓ -isogeny $f : E \rightarrow E'$ together with its dual ℓ -isogeny.

- ▶ In our example, these are

G_3 :



Towards IP1: Isogeny graphs

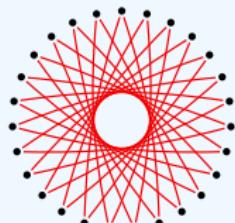
Definition

Let p and ℓ be distinct primes. The **isogeny graph** G_ℓ containing E/\mathbb{F}_p is the graph with:

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$ (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: we draw an edge $E - E'$ to represent an ℓ -isogeny $f : E \rightarrow E'$ together with its dual ℓ -isogeny.

- ▶ In our example, these are

G_5 :



Towards IP1: Isogeny graphs

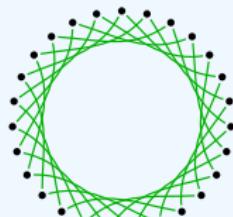
Definition

Let p and ℓ be distinct primes. The **isogeny graph** G_ℓ containing E/\mathbb{F}_p is the graph with:

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$ (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: we draw an edge $E - E'$ to represent an ℓ -isogeny $f : E \rightarrow E'$ together with its dual ℓ -isogeny.

- ▶ In our example, these are

G_7 :



Towards IP1: Isogeny graphs

Definition

Let p and ℓ be distinct primes. The **isogeny graph** G_ℓ containing E/\mathbb{F}_p is the graph with:

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$ (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: we draw an edge $E - E'$ to represent an ℓ -isogeny $f : E \rightarrow E'$ together with its dual ℓ -isogeny.

- ▶ In our example, these are



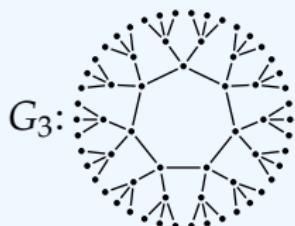
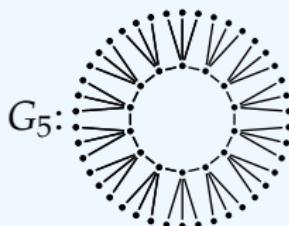
Towards IP1: Isogeny graphs

Definition

Let p and ℓ be distinct primes. The **isogeny graph** G_ℓ containing E/\mathbb{F}_p is the graph with:

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$ (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: we draw an edge $E - E'$ to represent an ℓ -isogeny $f : E \rightarrow E'$ together with its dual ℓ -isogeny.

- ▶ Generally, the G_ℓ look something like



Towards IP1: Endomorphism rings

- We want to make sure G_ℓ is a **cycle**.

Towards IP1: Endomorphism rings

- We want to make sure G_ℓ is a [cycle](#).
- Equivalently: every node in G_ℓ should be distance zero from the cycle.

Towards IP1: Endomorphism rings

- ▶ We want to make sure G_ℓ is a **cycle**.
- ▶ Equivalently: every node in G_ℓ should be distance zero from the cycle.
- ▶ Two nodes are at different distances from the cycle if and only if they have different **endomorphism rings**.

Towards IP1: Endomorphism rings

Definition

An **endomorphism** of an elliptic curve E is a morphism $E \rightarrow E$ (as abelian varieties).

Towards IP1: Endomorphism rings

Definition

An **endomorphism** of an elliptic curve E is a morphism $E \rightarrow E$ (as abelian varieties).

Example

Let E/\mathbb{F}_p be an elliptic curve.

- ▶ For $n \in \mathbb{Z}$, the multiplication-by- n map

$$\begin{aligned}[n] : \quad E &\rightarrow E \\ P &\mapsto nP\end{aligned}$$

is an endomorphism.

Towards IP1: Endomorphism rings

Definition

An **endomorphism** of an elliptic curve E is a morphism $E \rightarrow E$ (as abelian varieties).

Example

Let E/\mathbb{F}_p be an elliptic curve.

- ▶ For $n \in \mathbb{Z}$, the multiplication-by- n map

$$\begin{aligned}[n] : \quad E &\rightarrow E \\ P &\mapsto nP\end{aligned}$$

is an endomorphism.

- ▶ The Frobenius map

$$\begin{aligned}\pi : \quad E &\rightarrow E \\ (x, y) &\mapsto (x^p, y^p)\end{aligned}$$

is an endomorphism.

Towards IP1: Endomorphism rings

Definition

The \mathbb{F}_p -rational endomorphism ring $\text{End}_{\mathbb{F}_p}(E)$ of an elliptic curve E/\mathbb{F}_p is the set of \mathbb{F}_p -rational endomorphisms.

Towards IP1: Endomorphism rings

Definition

The \mathbb{F}_p -rational endomorphism ring $\text{End}_{\mathbb{F}_p}(E)$ of an elliptic curve E/\mathbb{F}_p is the set of \mathbb{F}_p -rational endomorphisms.

Example

Let $p > 3$, let $E/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ be a supersingular elliptic curve, and let π be the Frobenius endomorphism. Then

$$\pi \circ \pi = [-p]$$

and

$$\begin{aligned} \mathbb{Z}[\sqrt{-p}] &\rightarrow \text{End}_{\mathbb{F}_p}(E) \\ n &\mapsto [n] \\ \sqrt{-p} &\mapsto \pi \end{aligned}$$

extends \mathbb{Z} -linearly to a ring homomorphism.

Towards IP1: Group action

For $p \equiv 3 \pmod{8}$ and $p \geq 5$, if $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ is supersingular, then $\text{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$.

Towards IP1: Group action

For $p \equiv 3 \pmod{8}$ and $p \geq 5$, if $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ is supersingular, then $\text{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$.

- ▶ Remember: we want to replace exponentiation $\mathbb{Z} \times G \rightarrow G$ with a **commutative group action** $H \times S \rightarrow S$.

Towards IP1: Group action

For $p \equiv 3 \pmod{8}$ and $p \geq 5$, if $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ is supersingular, then $\text{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$.

- ▶ Remember: we want to replace exponentiation $\mathbb{Z} \times G \rightarrow G$ with a **commutative group action** $H \times S \rightarrow S$.
- ▶ The **set** S is the set of supersingular elliptic curves $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod{8}$ and $p \geq 5$.

Towards IP1: Group action

For $p \equiv 3 \pmod{8}$ and $p \geq 5$, if $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ is supersingular, then $\text{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$.

- ▶ Remember: we want to replace exponentiation $\mathbb{Z} \times G \rightarrow G$ with a **commutative group action** $H \times S \rightarrow S$.
- ▶ The **set** S is the set of supersingular elliptic curves $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod{8}$ and $p \geq 5$.
- ▶ The **group** $H = \text{Cl}(\mathbb{Z}[\sqrt{-p}])$ is the class group of $\text{End}_{\mathbb{F}_p}(E_A)$ for (every) $E_A \in S$.

Towards IP1: Group action

For $p \equiv 3 \pmod{8}$ and $p \geq 5$, if $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ is supersingular, then $\text{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$.

- ▶ Remember: we want to replace exponentiation $\mathbb{Z} \times G \rightarrow G$ with a **commutative group action** $H \times S \rightarrow S$.
- ▶ The **set** S is the set of supersingular elliptic curves $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod{8}$ and $p \geq 5$.
- ▶ The **group** $H = \text{Cl}(\mathbb{Z}[\sqrt{-p}])$ is the class group of $\text{End}_{\mathbb{F}_p}(E_A)$ for (every) $E_A \in S$.
- ▶ What is the action?

Towards IP1: Group action

- ▶ Let $I \subset \text{End}_{\mathbb{F}_p}(\mathbb{Z})$ be an ideal.

Towards IP1: Group action

- ▶ Let $I \subset \text{End}_{\mathbb{F}_p}(\mathbb{Z})$ be an ideal.
- ▶ Then

$$H_I = \bigcap_{\alpha \in I} \ker(\alpha)$$

is a subgroup of $E(\overline{\mathbb{F}_p})$.

Towards IP1: Group action

- ▶ Let $I \subset \text{End}_{\mathbb{F}_p}(\mathbb{Z})$ be an ideal.
- ▶ Then

$$H_I = \bigcap_{\alpha \in I} \ker(\alpha)$$

is a subgroup of $E(\overline{\mathbb{F}_p})$.

- ▶ Recall that isogenies are uniquely defined by their kernels (cf. First Isomorphism Theorem of Groups).

Towards IP1: Group action

- ▶ Let $I \subset \text{End}_{\mathbb{F}_p}(\mathbb{Z})$ be an ideal.
- ▶ Then

$$H_I = \bigcap_{\alpha \in I} \ker(\alpha)$$

is a subgroup of $E(\overline{\mathbb{F}_p})$.

- ▶ Recall that isogenies are uniquely defined by their kernels (cf. First Isomorphism Theorem of Groups).
- ▶ Define

$$f_I : E \rightarrow E/H_I$$

to be the isogeny from E with kernel H_I .

Towards IP1: Group action

- ▶ Let $I \subset \text{End}_{\mathbb{F}_p}(\mathbb{Z})$ be an ideal.
- ▶ Then

$$H_I = \bigcap_{\alpha \in I} \ker(\alpha)$$

is a subgroup of $E(\overline{\mathbb{F}_p})$.

- ▶ Recall that isogenies are uniquely defined by their kernels (cf. First Isomorphism Theorem of Groups).
- ▶ Define

$$f_I : E \rightarrow E/H_I$$

to be the isogeny from E with kernel H_I .

- ▶ For $[I] \in \text{Cl}(\mathbb{Z}[\sqrt{-p}])$, let \tilde{I} be an integral representative of the ideal class $[I]$. Then

$$\begin{aligned} \text{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S &\rightarrow S \\ ([I], E) &\mapsto f_{H_{\tilde{I}}}(E) \end{aligned}$$

is a **free, transitive group action!**

IP1: The graph is a composition of compatible cycles

- The nodes of the graph are the set S of supersingular elliptic curves $E/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod{8}$ and $p \geq 5$.

IP1: The graph is a composition of compatible cycles

- ▶ The nodes of the graph are the set S of supersingular elliptic curves $E/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod{8}$ and $p \geq 5$.
- ▶ The map

$$\begin{array}{ccc} \mathrm{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \rightarrow & S \\ ([I], E) & \mapsto & f_{H_{\tilde{I}}}(E) \end{array}$$

is a **free, transitive group action**.

IP1: The graph is a composition of compatible cycles

- ▶ The nodes of the graph are the set S of supersingular elliptic curves $E/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod{8}$ and $p \geq 5$.
- ▶ The map

$$\begin{array}{ccc} \mathrm{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \rightarrow & S \\ ([I], E) & \mapsto & f_{H_{\tilde{I}}}(E) \end{array}$$

is a **free, transitive group action**.

- ▶ Edges are the isogenies $f_{H_{\tilde{I}}}$ (together with their duals).

IP1: The graph is a composition of compatible cycles

- The nodes of the graph are the set S of supersingular elliptic curves $E/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod{8}$ and $p \geq 5$.
- The map

$$\begin{array}{ccc} \mathrm{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \rightarrow & S \\ ([I], E) & \mapsto & f_{H_{\tilde{I}}}(E) \end{array}$$

is a **free, transitive group action**.

- Edges are the isogenies $f_{H_{\tilde{I}}}$ (together with their duals).
~~ there is a choice of ℓ_1, \dots, ℓ_n such that $G_{\ell_1} \cup \dots \cup G_{\ell_n}$ is a composition of compatible cycles (IP1).

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

- Our group action was:

$$\begin{array}{ccc} \mathrm{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \rightarrow & S \\ ([I], E) & \mapsto & f_{H_{\bar{I}}}(E) =: [I] * E. \end{array}$$

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

- Our group action was:

$$\begin{array}{ccc} \mathrm{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \rightarrow & S \\ ([I], E) & \mapsto & f_{H_{\bar{I}}}(E) =: [I] * E. \end{array}$$

- For $\ell \in \{\ell_1, \dots, \ell_n\}$ as before and $[I] \in \mathrm{Cl}(\mathbb{Z}[\sqrt{-p}])$, the isogeny $f_{H_{\bar{I}}}(E)$ is an ℓ -isogeny if and only if

$$[I] = [\langle \ell, \pi \pm 1 \rangle].$$

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

- ▶ Our group action was:

$$\begin{array}{ccc} \mathrm{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \rightarrow & S \\ ([I], E) & \mapsto & f_{H_{\bar{I}}}(E) =: [I] * E. \end{array}$$

- ▶ For $\ell \in \{\ell_1, \dots, \ell_n\}$ as before and $[I] \in \mathrm{Cl}(\mathbb{Z}[\sqrt{-p}])$, the isogeny $f_{H_{\bar{I}}}(E)$ is an ℓ -isogeny if and only if

$$[I] = [\langle \ell, \pi \pm 1 \rangle].$$

- ▶ Choosing the direction in the graph corresponds to choosing this sign.

Towards IP2: Computing the neighbours

To compute a neighbour of E , we have to compute an ℓ -isogeny from a given elliptic curve. To do this:

- ▶ Find a point P of order ℓ on E .

Towards IP2: Computing the neighbours

To compute a neighbour of E , we have to compute an ℓ -isogeny from a given elliptic curve. To do this:

- ▶ Find a point P of order ℓ on E .
- ▶ Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using [Vélu's formulas](#) (implemented in Sage).

Towards IP2: Computing the neighbours

To compute a neighbour of E , we have to compute an ℓ -isogeny from a given elliptic curve. To do this:

- ▶ Find a point P of order ℓ on E .
- ▶ Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using [Vélu's formulas](#) (implemented in Sage).
- ▶ Let E/\mathbb{F}_p be supersingular and $p \geq 5$.

Towards IP2: Computing the neighbours

To compute a neighbour of E , we have to compute an ℓ -isogeny from a given elliptic curve. To do this:

- ▶ Find a point P of order ℓ on E .
- ▶ Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using [Vélu's formulas](#) (implemented in Sage).
- ▶ Let E/\mathbb{F}_p be supersingular and $p \geq 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.

Towards IP2: Computing the neighbours

To compute a neighbour of E , we have to compute an ℓ -isogeny from a given elliptic curve. To do this:

- ▶ Find a point P of order ℓ on E .
- ▶ Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using [Vélu's formulas](#) (implemented in Sage).
- ▶ Let E/\mathbb{F}_p be supersingular and $p \geq 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
- ▶ Suppose we have found $P = E(\mathbb{F}_p)$ of order $p + 1$ or $(p + 1)/2$.

Towards IP2: Computing the neighbours

To compute a neighbour of E , we have to compute an ℓ -isogeny from a given elliptic curve. To do this:

- ▶ Find a point P of order ℓ on E .
- ▶ Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas (implemented in Sage).
- ▶ Let E/\mathbb{F}_p be supersingular and $p \geq 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
- ▶ Suppose we have found $P = E(\mathbb{F}_p)$ of order $p+1$ or $(p+1)/2$.
- ▶ For every odd prime $\ell|(p+1)$, the point $\frac{p+1}{\ell}P$ is a point of order ℓ .

Towards IP2: Computing the neighbours

To compute a neighbour of E , we have to compute an ℓ -isogeny from a given elliptic curve. To do this:

- ▶ Find a point P of order ℓ on E .
- ▶ Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas (implemented in Sage).
- ▶ Let E/\mathbb{F}_p be supersingular and $p \geq 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
- ▶ Suppose we have found $P = E(\mathbb{F}_p)$ of order $p+1$ or $(p+1)/2$.
- ▶ For every odd prime $\ell|(p+1)$, the point $\frac{p+1}{\ell}P$ is a point of order ℓ .
- ▶ Given a \mathbb{F}_p -rational point of order ℓ , the isogeny computations can be done over \mathbb{F}_p .

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/\mathbb{F}_p with $p \geq 5$ in its ℓ -isogeny graph G_ℓ for odd $\ell|(p + 1)$:

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/\mathbb{F}_p with $p \geq 5$ in its ℓ -isogeny graph G_ℓ for odd $\ell|(p + 1)$:

- ▶ Fix conditions as before so that G_ℓ is a cycle, i.e., E has two neighbours.

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/\mathbb{F}_p with $p \geq 5$ in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$:

- ▶ Fix conditions as before so that G_ℓ is a cycle, i.e., E has two neighbours.
- ▶ Find a basis $\{P, Q\}$ of the ℓ -torsion with $P \in \mathbb{F}_p$.

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/\mathbb{F}_p with $p \geq 5$ in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$:

- ▶ Fix conditions as before so that G_ℓ is a cycle, i.e., E has two neighbours.
- ▶ Find a basis $\{P, Q\}$ of the ℓ -torsion with $P \in \mathbb{F}_p$.
- ▶ $1 \in \mathbb{Z}/\ell\mathbb{Z}$ is an eigenvalue of Frobenius on the ℓ -torsion; the action $[\langle \ell, \pi - 1 \rangle] * E$ gives an ℓ -isogeny in the '+' direction.

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/\mathbb{F}_p with $p \geq 5$ in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$:

- ▶ Fix conditions as before so that G_ℓ is a cycle, i.e., E has two neighbours.
- ▶ Find a basis $\{P, Q\}$ of the ℓ -torsion with $P \in \mathbb{F}_p$.
- ▶ $1 \in \mathbb{Z}/\ell\mathbb{Z}$ is an eigenvalue of Frobenius on the ℓ -torsion; the action $[\langle \ell, \pi - 1 \rangle] * E$ gives an ℓ -isogeny in the '+' direction.
- ▶ The other eigenvalue of Frobenius is $p/\ell \in \mathbb{Z}/\ell\mathbb{Z}$.

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/\mathbb{F}_p with $p \geq 5$ in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$:

- ▶ Fix conditions as before so that G_ℓ is a cycle, i.e., E has two neighbours.
- ▶ Find a basis $\{P, Q\}$ of the ℓ -torsion with $P \in \mathbb{F}_p$.
- ▶ $1 \in \mathbb{Z}/\ell\mathbb{Z}$ is an eigenvalue of Frobenius on the ℓ -torsion; the action $[\langle \ell, \pi - 1 \rangle] * E$ gives an ℓ -isogeny in the '+' direction.
- ▶ The other eigenvalue of Frobenius is $p/\ell \in \mathbb{Z}/\ell\mathbb{Z}$.
- ▶ If $p \equiv -1 \pmod{\ell}$ then the action $[\langle \ell, \pi + 1 \rangle] * E$ gives an ℓ -isogeny in the '-' direction.

IP2: Computing neighbours in given directions

For which ℓ can we (efficiently) compute the neighbours of supersingular E/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell|(p + 1)$?

²You still need a little more to get computations for both the + and – directions to be over \mathbb{F}_p

IP2: Computing neighbours in given directions

For which ℓ can we (efficiently) compute the neighbours of supersingular E/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell|(p + 1)$? Choosing $p = 4\ell_1 \cdots \ell_n - 1$ ensures:

- ▶ Every $\ell_i|(p + 1)$, so there is a rational basis point of the ℓ_i -torsion

²You still need a little more to get computations for both the + and – directions to be over \mathbb{F}_p

IP2: Computing neighbours in given directions

For which ℓ can we (efficiently) compute the neighbours of supersingular E/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$? Choosing $p = 4\ell_1 \cdots \ell_n - 1$ ensures:

- ▶ Every $\ell_i|(p+1)$, so there is a rational basis point of the ℓ_i -torsion
- ▶ $p \equiv 3 \pmod{8}$, so G_{ℓ_i} is a cycle (we have our group action)

²You still need a little more to get computations for both the + and – directions to be over \mathbb{F}_p

IP2: Computing neighbours in given directions

For which ℓ can we (efficiently) compute the neighbours of supersingular E/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$? Choosing $p = 4\ell_1 \cdots \ell_n - 1$ ensures:

- ▶ Every $\ell_i|(p+1)$, so there is a rational basis point of the ℓ_i -torsion
- ▶ $p \equiv 3 \pmod{8}$, so G_{ℓ_i} is a cycle (we have our group action)
- ▶ $p \equiv 1 \pmod{\ell_i}$, so ℓ_i -isogenies come from action of $[\langle \ell_i, \pi \pm 1 \rangle]$.

²You still need a little more to get computations for both the + and – directions to be over \mathbb{F}_p

IP2: Computing neighbours in given directions

For which ℓ can we (efficiently) compute the neighbours of supersingular E/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$? Choosing $p = 4\ell_1 \cdots \ell_n - 1$ ensures:

- ▶ Every $\ell_i|(p+1)$, so there is a rational basis point of the ℓ_i -torsion
- ▶ $p \equiv 3 \pmod{8}$, so G_{ℓ_i} is a cycle (we have our group action)
- ▶ $p \equiv 1 \pmod{\ell_i}$, so ℓ_i -isogenies come from action of $[\langle \ell_i, \pi \pm 1 \rangle]$.

Given the group action as above, Vélu's formulas give actual isogenies!

With our design choices all isogeny computations are over \mathbb{F}_p .²

²You still need a little more to get computations for both the + and – directions to be over \mathbb{F}_p

Representing nodes of the graph

- Every node of G_{ℓ_i} is

$$E_A : y^2 = x^3 + Ax^2 + x.$$

Representing nodes of the graph

- Every node of G_{ℓ_i} is

$$E_A : y^2 = x^3 + Ax^2 + x.$$

- ⇒ Can compress every node to a single value $A \in \mathbb{F}_p$.

Representing nodes of the graph

- Every node of G_{ℓ_i} is

$$E_A : y^2 = x^3 + Ax^2 + x.$$

- ⇒ Can compress every node to a single value $A \in \mathbb{F}_p$.
- ⇒ Tiny keys!

Does any A work?

³This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has $p + 1$ points.

Does any A work?

No.

³This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has $p + 1$ points.

Does any A work?

No.

- About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.

³This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has $p + 1$ points.

Does any A work?

No.

- ▶ About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.
- ▶ **Public-key validation:** Check that E_A has $p + 1$ points.

Easy Monte-Carlo algorithm: Pick random P on E_A and check $[p + 1]P = \infty$.³

³This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has $p + 1$ points.

Classical Security

- Security is based on the [isogeny problem](#): given two elliptic curves, compute an isogeny between them.

Classical Security

- ▶ Security is based on the [isogeny problem](#): given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$.

Classical Security

- ▶ Security is based on the [isogeny problem](#): given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$. An attacker has to compute one isogeny of degree $\prod \ell_i^{e_i}$ (cf. isogeny evaluation complexity from David Jao's talk).

Classical Security

- ▶ Security is based on the [isogeny problem](#): given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$. An attacker has to compute one isogeny of degree $\prod \ell_i^{e_i}$ (cf. isogeny evaluation complexity from David Jao's talk).
- ▶ Alternative way of thinking about it: Alice has to compute the isogeny corresponding to one path from E_0 to E_A , whereas an attacker has to compute all the possible paths from E_0 to E_A .

Classical Security

- ▶ Security is based on the [isogeny problem](#): given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$. An attacker has to compute one isogeny of degree $\prod \ell_i^{e_i}$ (cf. isogeny evaluation complexity from David Jao's talk).
- ▶ Alternative way of thinking about it: Alice has to compute the isogeny corresponding to one path from E_0 to E_A , whereas an attacker has to compute all the possible paths from E_0 to E_A .
- ▶ Best classical attacks are (variants of) [meet-in-the-middle](#): Time $O(\sqrt[4]{p})$.

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

- ▶ Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

- ▶ Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- ▶ Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

- ▶ Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- ▶ Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.
- ▶ Kuperberg later [Kup2] gave more trade-off options for quantum and classical memory vs. time.

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

- ▶ Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- ▶ Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.
- ▶ Kuperberg later [Kup2] gave more trade-off options for quantum and classical memory vs. time.
- ▶ Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to CRS – their attack also applies to CSIDH.
- ▶ Part of CJS attack computes many paths in superposition.

Quantum Security

- ▶ The **exact** cost of the Kuperberg/Regev/CJS attack is **subtle** – it depends on:
 - ▶ Choice of time/memory trade-off (Regev/Kuperberg)
 - ▶ Quantum evaluation of isogenies(and much more).

⁴From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

Quantum Security

- ▶ The **exact** cost of the Kuperberg/Regev/CJS attack is **subtle** – it depends on:
 - ▶ Choice of time/memory trade-off (Regev/Kuperberg)
 - ▶ Quantum evaluation of isogenies(and much more).
- ▶ Most previous analysis focussed on asymptotics

⁴From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

Quantum Security

- ▶ The **exact** cost of the Kuperberg/Regev/CJS attack is **subtle** – it depends on:
 - ▶ Choice of time/memory trade-off (Regev/Kuperberg)
 - ▶ Quantum evaluation of isogenies(and much more).
- ▶ Most previous analysis focussed on asymptotics
- ▶ Recent preprint [BLMP] gives full computer-verified simulation of quantum evaluation of isogenies. Computes **one** query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.

⁴From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

Quantum Security

- ▶ The **exact** cost of the Kuperberg/Regev/CJS attack is **subtle** – it depends on:
 - ▶ Choice of time/memory trade-off (Regev/Kuperberg)
 - ▶ Quantum evaluation of isogenies(and much more).
- ▶ Most previous analysis focussed on asymptotics
- ▶ Recent preprint [BLMP] gives full computer-verified simulation of quantum evaluation of isogenies. Computes **one** query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.
- ▶ For fastest variant of Kuperberg (uses billions of qubits), total cost of CSIDH-512 attack is about 2^{81} qubit operations.⁴

⁴From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

Parameters

CSIDH- $\log p$	intended NIST level		public key size	private key size	time (full exchange)	cycles (full exchange)	stack memory	classical security
CSIDH-512	1	64 b	32 b	85 ms	212e6	4368 b	128	
CSIDH-1024	3	128 b	64 b				256	
CSIDH-1792	5	224 b	112 b				448	

Work in progress & future work

- ▶ **Fast** and **constant-time** implementation. (For ideas on constant-time optimization, see [BLMP], [MR]).

Work in progress & future work

- ▶ **Fast** and **constant-time** implementation. (For ideas on constant-time optimization, see [BLMP], [MR]).
- ▶ **Hardware** implementation.

Work in progress & future work

- ▶ **Fast** and **constant-time** implementation. (For ideas on constant-time optimization, see [BLMP], [MR]).
- ▶ **Hardware** implementation.
- ▶ More **applications**.

Work in progress & future work

- ▶ **Fast** and **constant-time** implementation. (For ideas on constant-time optimization, see [BLMP], [MR]).
- ▶ **Hardware** implementation.
- ▶ More **applications**.
- ▶ [Your paper here!]

A photograph of a sunset over the ocean. The sky is a gradient from blue to orange and yellow. Several palm trees are silhouetted against the bright horizon. In the foreground, the dark silhouettes of pine branches are visible on the left. A white rectangular box is overlaid on the upper right portion of the image, containing the text "Thank you!" in a large, serif font.

Thank you!

References

Mentioned in this talk:

BLMP Bernstein, Lange, Martindale, and Panny:
Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies
<https://quantum.isogeny.org>

BS Bonnetain, Schrottenloher:
Quantum Security Analysis of CSIDH and Ordinary Isogeny-based Schemes
<https://ia.cr/2018/537>

CLMPR Castryck, Lange, Martindale, Panny, Renes:
CSIDH: An Efficient Post-Quantum Commutative Group Action
<https://ia.cr/2018/383>

CJS Childs, Jao, and Soukharev:
Constructing elliptic curve isogenies in quantum subexponential time
<https://arxiv.org/abs/1012.4019>

DG De Feo, Galbraith:
SeaSign: Compact isogeny signatures from class group actions
<https://ia.cr/2018/824>

DKS De Feo, Kieffer, Smith:
Towards practical key exchange from ordinary isogeny graphs
<https://ia.cr/2018/485>

References

Mentioned in this talk (contd.):

DOPS Delpech de Saint Guilhem, Orsini, Petit, and Smart:
Secure Oblivious Transfer from Semi-Commutative Masking
<https://ia.cr/2018/648>

FTY Fujioka, Takashima, and Yoneyama:
One-Round Authenticated Group Key Exchange from Isogenies
<https://eprint.iacr.org/2018/1033>

MR Meyer, Reith:
A faster way to the CSIDH
<https://ia.cr/2018/782>

Kup1 Kuperberg:
A subexponential-time quantum algorithm for the dihedral hidden subgroup problem
<https://arxiv.org/abs/quant-ph/0302112>

Kup2 Kuperberg:
Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem
<https://arxiv.org/abs/1112.3333>

Reg Regev:
A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space
<https://arxiv.org/abs/quant-ph/0406151>

References

Further reading:

- BIJ Biasse, Iezzi, Jacobson:
A note on the security of CSIDH
<https://arxiv.org/pdf/1806.03656>
- DPV Decru, Panny, and Vercauteren:
Faster SeaSign signatures through improved rejection sampling
<https://eprint.iacr.org/2018/1109>
- JLLR Jao, LeGrow, Leonardi, Ruiz-Lopez:
A polynomial quantum space attack on CRS and CSIDH
(MathCrypt 2018)

Credits: thanks to Lorenz Panny for many of these slides, including all of the beautiful pictures.