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History

1976 Diffie-Hellman: Key exchange using exponentiation in
groups (DH)

1985 Koblitz-Miller: Diffie-Hellman style key exchange using
multiplication in elliptic curve groups (ECDH)

1990 Brassard-Yung: Generalizes ‘group exponentiation’ to
‘groups acting on sets’ in a crypto context

1994 Shor: Polynomial-time quantum algorithm to break the
discrete logarithm problem in any group, quantumly
breaking DH and ECDH

1997 Couveignes: Post-quantum isogeny-based
Diffie-Hellman-style key exchange using commutative
group actions (not published at the time)

2003 Kuperberg: Subexponential-time quantum algorithm to
attack cryptosystems based on a hidden shift
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History

2004 Stolbunov-Rostovtsev independently rediscover
Couveignes’ scheme (CRS)

2006 Charles-Goren-Lauter: Build hash function from
supersingular isogeny graph

2010 Childs-Jao-Soukharev: Apply Kuperberg’s (and Regev’s)
hidden shift subexponential quantum algorithm to CRS

2011 Jao-De Feo: Build Diffie-Hellman style key exchange from
supersingular isogeny graph (SIDH)

2018 De Feo-Kieffer-Smith: Apply new ideas to speed up CRS
2018 Castryck-Lange-Martindale-Panny-Renes: Apply ideas of

De Feo, Kieffer, Smith to supersingular curves over Fp
(CSIDH)

(History slides mostly stolen from Wouter Castryck)
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Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH

I Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

I Small keys: 64 bytes at conjectured AES-128 security level
I Competitive speed: ∼ 85 ms for a full key exchange
I Flexible:

I Compatible with 0-RTT protocols such as QUIC
I [DG] uses CSIDH for ‘SeaSign’ signatures
I [DGOPS] uses CSIDH for oblivious transfer
I [FTY] uses CSIDH for authenticated group key exchange
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CSIDH vs SIDH?

Apart from mathematical background, SIDH and CSIDH actually have very
little in common, and are likely to be useful for different applications.

Here is a comparison (mostly stolen from Luca de Feo):

CSIDH SIDH
Speed (NIST 1) 85ms ≈ 10ms1

Public key size (NIST 1) 64B 378B
Key compression (speed) ≈ 15ms
Key compression (size) 222B

Constant time implementation yes (quick and dirty) yes
Submitted to NIST no yes

Maturity 7 months 7 years
Best classical attack p1/4 p1/4

Best quantum attack subexponential p1/6

Key size scales quadratically linearly
Security assumption isogeny walk problem ad hoc

CPA security yes yes
CCA security yes Fujisaki-Okamoto

Non-interactive key exchange yes unbearably slow
Signatures (classical) unbearably slow seconds
Signatures (quantum) seconds still seconds?

1
This is a very conservative estimate!
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Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Shor’s algorithm quantumly computes x from gx in any group
in polynomial time.

 Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.
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Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.
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Cycles are compatible: [right, then left] = [left, then right], etc.
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Union of cycles: rapid mixing
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CSIDH: Nodes are now elliptic curves and edges are isogenies.
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Graphs of elliptic curves
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Nodes: Supersingular curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies.
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Quantumifying Exponentiation

I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I Replace Z by a commutative group H... more details to

come!
I The action of a well-chosen h ∈ H on S moves the elliptic

curves one step around one of the cycles.
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Graphs of elliptic curves
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A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)
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Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−] [+,+,−,+]
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A walkable graph

I Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x
over F419.

I Edges: 3-, 5-, and 7-isogenies (more details to come).

Important properties for such a walk:

IP1 I The graph is a composition of compatible cycles.
IP2 I We can compute neighbours in given directions.
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Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):
I An elliptic curve E/Fp (for p ≥ 5) is supersingular if

#E(Fp) = p + 1.

I An isogeny between two elliptic curves E→ E′ is a
surjective morphism (of abelian varieties) that preserves
the identity.

I For elliptic curves E,E′/Fp and a prime ` 6= p, an `-isogeny
f : E→ E′ is an isogeny with #ker(f ) = `.

I If f : E→ E′ is an `-isogeny, there is a unique dual isogeny
f∨ : E′ → E such that f∨ ◦ f = [`] is the multiplication-by-`
map on E.

I The dual isogeny is also an `-isogeny.

16 / 37



Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):
I An elliptic curve E/Fp (for p ≥ 5) is supersingular if

#E(Fp) = p + 1.
I An isogeny between two elliptic curves E→ E′ is a

surjective morphism (of abelian varieties) that preserves
the identity.

I For elliptic curves E,E′/Fp and a prime ` 6= p, an `-isogeny
f : E→ E′ is an isogeny with #ker(f ) = `.

I If f : E→ E′ is an `-isogeny, there is a unique dual isogeny
f∨ : E′ → E such that f∨ ◦ f = [`] is the multiplication-by-`
map on E.

I The dual isogeny is also an `-isogeny.

16 / 37



Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):
I An elliptic curve E/Fp (for p ≥ 5) is supersingular if

#E(Fp) = p + 1.
I An isogeny between two elliptic curves E→ E′ is a

surjective morphism (of abelian varieties) that preserves
the identity.

I For elliptic curves E,E′/Fp and a prime ` 6= p, an `-isogeny
f : E→ E′ is an isogeny with #ker(f ) = `.

I If f : E→ E′ is an `-isogeny, there is a unique dual isogeny
f∨ : E′ → E such that f∨ ◦ f = [`] is the multiplication-by-`
map on E.

I The dual isogeny is also an `-isogeny.

16 / 37



Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):
I An elliptic curve E/Fp (for p ≥ 5) is supersingular if

#E(Fp) = p + 1.
I An isogeny between two elliptic curves E→ E′ is a

surjective morphism (of abelian varieties) that preserves
the identity.

I For elliptic curves E,E′/Fp and a prime ` 6= p, an `-isogeny
f : E→ E′ is an isogeny with #ker(f ) = `.

I If f : E→ E′ is an `-isogeny, there is a unique dual isogeny
f∨ : E′ → E such that f∨ ◦ f = [`] is the multiplication-by-`
map on E.

I The dual isogeny is also an `-isogeny.

16 / 37



Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):
I An elliptic curve E/Fp (for p ≥ 5) is supersingular if

#E(Fp) = p + 1.
I An isogeny between two elliptic curves E→ E′ is a

surjective morphism (of abelian varieties) that preserves
the identity.

I For elliptic curves E,E′/Fp and a prime ` 6= p, an `-isogeny
f : E→ E′ is an isogeny with #ker(f ) = `.

I If f : E→ E′ is an `-isogeny, there is a unique dual isogeny
f∨ : E′ → E such that f∨ ◦ f = [`] is the multiplication-by-`
map on E.

I The dual isogeny is also an `-isogeny.

16 / 37



Towards IP1: Isogeny graphs

Definition
Let p and ` be distinct primes. The isogeny graph G` containing
E/Fp is the graph with:

I Nodes: elliptic curves E′/Fp with #E(Fp) = #E′(Fp) (up to
Fp-isomorphism).

I Edges: we draw an edge E− E′ to represent an `-isogeny
f : E→ E′ together with its dual `-isogeny.
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I Edges: we draw an edge E− E′ to represent an `-isogeny
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Towards IP1: Endomorphism rings

I We want to make sure G` is a cycle.

I Equivalently: every node in G` should be distance zero
from the cycle.

I Two nodes are at different distances from the cycle if and
only if they have different endomorphism rings.
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Towards IP1: Endomorphism rings
Definition
An endomorphism of an elliptic curve E is a morphism E→ E
(as abelian varieties).

Example
Let E/Fp be an elliptic curve.

I For n ∈ Z, the mulitplication-by-n map

[n] : E → E
P 7→ nP

is an endomorphism.
I The Frobenius map

π : E → E
(x, y) 7→ (xp, yp)

is an endomorphism.
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Towards IP1: Endomorphism rings

Definition
The Fp-rational endomorphism ring EndFp(E) of an elliptic
curve E/Fp is the set of Fp-rational endomorphisms.

Example
Let p > 3, let E/Fp : y2 = x3 + Ax2 + x be a supersingular elliptic
curve, and let π be the Frobenius endomorphism. Then

π ◦ π = [−p]

and
Z[√−p] → EndFp(E)

n 7→ [n]√−p 7→ π

extends Z-linearly to a ring homomorphism.

20 / 37



Towards IP1: Endomorphism rings

Definition
The Fp-rational endomorphism ring EndFp(E) of an elliptic
curve E/Fp is the set of Fp-rational endomorphisms.

Example
Let p > 3, let E/Fp : y2 = x3 + Ax2 + x be a supersingular elliptic
curve, and let π be the Frobenius endomorphism. Then

π ◦ π = [−p]

and
Z[√−p] → EndFp(E)

n 7→ [n]√−p 7→ π

extends Z-linearly to a ring homomorphism.

20 / 37



Towards IP1: Group action

For p ≡ 3 (mod 8) and p ≥ 5, if EA/Fp : y2 = x3 + Ax2 + x is
supersingular, then EndFp(EA) ∼= Z[√−p].

I Remember: we want to replace exponentiation Z× G→ G
with a commutative group action H × S→ S.

I The set S is the set of supersingular elliptic curves
EA/Fp : y2 = x3 + Ax2 + x with p ≡ 3 (mod 8) and p ≥ 5.

I The group H = Cl(Z[√−p]) is the class group of EndFp(EA)
for (every) EA ∈ S.

I What is the action?
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Towards IP1: Group action
I Let I ⊂ EndFp(Z) be an ideal.

I Then
HI =

⋂
α∈I

ker(α)

is a subgroup of E(Fp).
I Recall that isogenies are uniquely defined by their kernels

(cf. First Isomorphism Theorem of Groups).
I Define

fI : E→ E/HI

to be the isogeny from E with kernel HI.
I For [I] ∈ Cl(Z[√−p]), let Ĩ be an integral representative of

the ideal class [I]. Then

Cl(Z[√−p])× S → S
([I],E) 7→ fHĨ

(E)

is a free, transitive group action!
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I For [I] ∈ Cl(Z[√−p]), let Ĩ be an integral representative of

the ideal class [I]. Then

Cl(Z[√−p])× S → S
([I],E) 7→ fHĨ
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I For [I] ∈ Cl(Z[√−p]), let Ĩ be an integral representative of
the ideal class [I]. Then

Cl(Z[√−p])× S → S
([I],E) 7→ fHĨ
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IP1: The graph is a composition of compatible cycles

I The nodes of the graph are the set S of supersingular
elliptic curves E/Fp : y2 = x3 + Ax2 + x with p ≡ 3 (mod 8)
and p ≥ 5.

I The map
Cl(Z[√−p])× S → S

([I],E) 7→ fHĨ
(E)

is a free, transitive group action.
I Edges are the isogenies fHĨ

(together with their duals).

 there is a choice of `1, . . . , `n such that G`1 ∪ · · · ∪ G`n is a
composition of compatible cycles (IP1).
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Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

I Our group action was:

Cl(Z[√−p])× S → S
([I],E) 7→ fHĨ

(E) =: [I] ∗ E.

I For ` ∈ {`1, · · · , `n} as before and [I] ∈ Cl(Z[√−p]), the
isogeny fHĨ

(E) is an `-isogeny if and only if

[I] = [〈`, π ± 1〉].

I Choosing the direction in the graph corresponds to
choosing this sign.
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Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an `-isogeny
from a given elliptic curve. To do this:

I Find a point P of order ` on E.

I Compute the isogeny with kernel {P, 2P, . . . , `P} using
Vélu’s formulas (implemented in Sage).

I Let E/Fp be supersingular and p ≥ 5. Then E(Fp) ∼= Cp+1 or
C2 × C(p+1)/2.

I Suppose we have found P = E(Fp) of order p + 1 or
(p + 1)/2.

I For every odd prime `|(p + 1), the point p+1
` P is a point of

order `.
I Given a Fp-rational point of order `, the isogeny

computations can be done over Fp.
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IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/Fp with p ≥ 5 in
its `-isogeny graph G` for odd `|(p + 1):

I Fix conditions as before so that G` is a cycle, i.e., E has two
neighbours.

I Find a basis {P,Q} of the `-torsion with P ∈ Fp.
I 1 ∈ Z/`Z is an eigenvalue of Frobenius on the `-torsion; the

action [〈`, π − 1〉] ∗ E gives an `-isogeny in the ’+’ direction.
I The other eigenvalue of Frobenius is p/` ∈ Z/`Z.
I If p ≡ −1 (mod `) then the action [〈`, π + 1〉] ∗ E gives an
`-isogeny in the ’−’ direction.
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IP2: Computing neighbours in given directions

For which ` can we (efficiently) compute the neighbours of
supersingular E/Fp in its `-isogeny graph G` for odd `|(p + 1)?

Choosing p = 4`1 · · · `n − 1 ensures:
I Every `i|(p + 1), so there is a rational basis point of the
`i-torsion

I p ≡ 3 (mod 8), so G`i is a cycle (we have our group action)
I p ≡ 1 (mod `i), so `i-isogenies come from action of

[〈`i, π ± 1〉].
Given the group action as above, Vélu’s formulas give actual
isogenies!
With our design choices all isogeny computations are over Fp. 2

2You still need a little more to get computations for both the + and −
directions to be over Fp
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Representing nodes of the graph

I Every node of G`i is

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.
⇒ Tiny keys!
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Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P =∞.3

3This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.
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Classical Security

I Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

I Say Alice’s secret is isogeny is of degree `e1
1 · · · `

en
n . She

knows the path, so can do only small degree isogeny
computations, giving complexity O(

∑
ei`i). An attacker

has to compute one isogeny of degree
∏
`ei

i (cf. isogeny
evaluation complexity from David Jao’s talk).

I Alternative way of thinking about it: Alice has to compute
the isogeny corresponding to one path from E0 to EA,
whereas an attacker has compute all the possible paths
from E0 to EA.

I Best classical attacks are (variants of) meet-in-the-middle:
Time O( 4

√p).
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Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

I Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

I Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

I Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

I Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to
CRS – their attack also applies to CSIDH.

I Part of CJS attack computes many paths in superposition.
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Quantum Security

I The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

I Choice of time/memory trade-off (Regev/Kuperberg)
I Quantum evaluation of isogenies

(and much more).

I Most previous analysis focussed on asymptotics
I Recent preprint [BLMP] gives full computer-verified

simulation of quantum evaluation of isogenies. Computes
one query (i.e. CSIDH-512 group action) using
765325228976 ≈ 0.7 · 240 nonlinear bit operations.

I For fastest variant of Kuperberg (uses billions of qubits),
total cost of CSIDH-512 attack is about 281 qubit
operations.

4

4From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.
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Parameters
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CSIDH-512 1 64 b 32 b 85 ms 212e6 4368 b 128
CSIDH-1024 3 128 b 64 b 256
CSIDH-1792 5 224 b 112 b 448
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Work in progress & future work

I Fast and constant-time implementation. (For ideas on
constant-time optimization, see [BLMP], [MR]).

I Hardware implementation.
I More applications.

I [Your paper here!]
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Thank you!
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